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Abstract

The Navier–Stokes equations were used to simulate two laterally driven microcomb structures in this study. The

total quality factors predicted numerically agree quite well with the experimental data. The numerical results show that

the bottom surface of the oscillating structure contributes about 66% of the total damping and is very close to that

predicted by the Couette flow model. The top, side, and edge surface each contributes about 10–12%. The flow above

the oscillating structure is far from the Stokes flow due to the curvilinear fluid motion generated by the pumping and

sucking motions of the oscillating structure. Lifting the gap between the oscillating structure and the substrate is an

effective way to reduce the total damping, and its effectiveness was investigated. The magnitude of the amplitude of the

oscillating structure was found to have very minor effect on the damping. The slip effect was also included in this study.

The slip effect reduces the viscous damping on the bottom surface of the oscillating structure by about 7%.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The high strength and stable mechanical properties

of silicon together with the on going advances in semi-

conductor fabrication techniques make it possible to

make high performance microsensors with high resolu-

tion, accuracy, repeatability, and low cost. Among these

new devices are laterally driven microactuators and

microsensors. In contrast to vertically driven devices,

with damping provided by a fluid squeeze-film produced

by the relative axial or tilting motion of two closely

spaced plates [1], the viscous shear in the thin fluid film is

the dominant damping mechanism in laterally driven

microstructures.

Cho et al. [2] demonstrated the attractive features of

laterally driven microstructures by resonant sensors and

actuators, frequency selective microfilters, and damped

microaccelerometers. The damping level of a micro-
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structure plays an important role in the performance of

a system. For example, small damping leads to a high

quality factor, Q. The quality factor is defined as the

total energy stored in a microstructure divided by the

sum of energy losses from the vibrating elements.

Stemme [3] showed that a high Q simplifies the feedback

control of the control loop and gives better resolution

and stability. Cho et al. [2] also showed that adequate

damping is needed to obtain flat output signals over

wide frequency ranges and prevent amplitude and phase

distortions.

Among the factors that affect the dynamic perfor-

mance of a resonant sensor, such as mass, resonant

frequency, stiffness, and damping, damping is the most

difficult to estimate. This is because there are several

damping mechanisms related to the total Q, for example,

viscous and acoustic dampings, damping due to imbal-

ance in the structure, and damping resulting from

internal material related losses [3]. Viscous damping due

to the interaction between the vibrating structure and

the surrounding fluid (mostly air) is the dominant

damping mechanism in most resonant sensors. Yet, it is
ed.
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Nomenclature

d distance between the oscillating structure

and the substrate, m

D dissipation energy, J

E strain energy of the comb structure, J

h height of the oscillating structure, m

K equivalent stiffness of the supporting tethers

for the seismic mass, N/m

Kn Knudsen number (¼ k
d)

L length of the oscillating structure, m

M mass of the movable comb structure, kg

p dimensional pressure, Pa

�p nondimensional pressure (¼ðp � p1Þ=
ðlU0=dÞ)

p1 atmospheric pressure, Pa

Q quality factor (¼ 2p E
D)

Re Reynolds number (¼ qU0d
l )

St Strouhal number (¼ dx
U0
)

u dimensional velocity in the x-direction, m/s

�u nondimensional velocity in the �x-direction
U0 lateral velocity of the oscillating structure,

m/s

v dimensional velocity in the y-direction, m/s

�v nondimensional velocity in the �y-direction
x dimensional x-coordinate, m
�x nondimensional x-coordinate
y dimensional y-coordinate, m
�y nondimensional y-coordinate

Greek symbols

k mean free path of air molecules, m

m kinetic viscosity, m2/s

x resonant frequency of the oscillating struc-

ture, rad/s

q air density, kg/m3

r ratio of diffusively reflected molecules

s nondimensional time (¼xt)

flexure suspension movable comb stationary comb

keep-off bump
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Fig. 1. The schematic diagram of a microcomb structure.
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the most difficult to estimate accurately, because the flow

is highly nonlinear. Fig. 1 shows a typical laterally dri-

ven microcomb structure, consisting of a mass sus-

pended with tethers anchored onto the sensor body. The

lateral motion of the vibrating structure alters the area

of the capacitor and changes the output voltage. To

maintain system sensitivity, the stiffness of the support-

ing tethers should be kept small.

The dynamic performance of laterally driven mi-

crocomb structures was studied experimentally as well

as analytically by several investigators. Tang et al. [4,5]

investigated viscous air damping in microcomb struc-

tures based on a Couette flow model. The theoretically

estimated Q-factors, although qualitatively consistent

with the measured Q, were much higher than the

measured values. Cho et al. [2,6] studied this problem

using a Stokes flow model. The Q-factors calculated

using the Stokes flow model were in better agreement

with the experimental data than that computed using

the Couette flow model. However, large discrepancies

still remained between the analytical and measured Q
values. Zhang and Tang [7] developed an empirical

formula based on experimental data to include the edge

and finite-size effects. This formula was based on a very

limited database and has not been validated extensively.

Ye et al. [8] investigated this problem using a boundary

element method. The numerically predicted Q-factor is

within 10% of the experimental data, but only one set

of data was compared. The details of the flow

field cannot be shown by the boundary element

method. The slip effect was also not included in the

investigation.
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The Couette and Stokes flow models assume that the

vibrating structure is infinite; while in reality it is finite.

The effects of the pumping and sucking motions gener-

ated by the edges of the vibrating structure are un-

known. The purpose of this study is to develop a

numerical scheme that is able to simulate the flow field

around a comb structure, so that the edge and finite-size

effects can be understood. The Knudsen number in

typical microcomb structures indicates that part of the

flow is in the slip flow region. The slip effect is also in-

cluded in this study.
2. Analytical solutions

2.1. The flow solution in region I

To simplify the solution procedure, we assumed that

the flow in a cut-off plane (a–a or b–b in Fig. 1) parallel

to the oscillating direction of the comb structure is two-

dimensional. In deriving the analytical solutions (Fig. 2),

the oscillating structure was assumed to be infinite, the

flow in region I becomes a flow over an impulsively

started oscillating plate. The �v velocity vanishes. The

governing equation and the corresponding boundary

conditions are

c
o�u
os

¼ o2�u
o�y2

ð1Þ

�u ¼ cos s for �y ¼ d þ h
d

ðon the top surface of the oscillating structureÞ ð2Þ

�u ¼ 0 for �y ! 1
ðfar away from the oscillating structureÞ ð3Þ

In the above equations �u, �v are the nondimensional

velocities in the �x- and �y-direction, respectively. The

physical quantities are normalized using the following

relations

�x ¼ x=d; �y ¼ y=d; �u ¼ u=U0; �v ¼ v=U0; s ¼ xt

The parameter c is defined as c ¼ St � Re, Re and St are
the Reynolds number and Strouhal number, respec-

tively, and are defined by Re ¼ qU0d=l, St ¼ dx=U0.
h
d

tU ωcos0

(II) y x
Substrate

(I)

L

Fig. 2. The coordinate system for the analytical and numerical

solutions.
The parameters U0 and x are the velocity and resonant

frequency of the oscillating structure, respectively. The

parameter d is the gap between the oscillating structure

and the substrate and l is the absolute viscosity of air.

The problem described above is the so-called Stokes’

second problem [9]. Eq. (1) is a parabolic equation that

can be solved using the separation of variables method

[10]. The result is

�uðs;�yÞ ¼ � 2ffiffiffi
p

p
Z 1

2

ffiffi
c
s

p
�y�dþh

dð Þ

0

cos s

�
� c

4n2
�y
�

� d þ h
d

��

� expð�n2Þdnþ exp

�
�

ffiffiffi
c
2

r
�y
�

� d þ h
d

��

� cos s

�
�

ffiffiffi
c
2

r
�y
�

� d þ h
d

��
ð4Þ

The first term in the above equation represents the

transient motion, which dies down after some time. The

second term denotes the steady state motion. The energy

dissipated by the viscous shear on the top surface per

oscillating cycle can be calculated using

Dtop ¼
Z
Atop

Z 2p=x

0

vw � U0 cosxt � dt � dA ð5Þ

The parameter vw is the viscous shear at the wall and

U0 cosxt is the velocity of the oscillating structure.

2.2. The flow solution in region II

The governing equation and the corresponding

boundary conditions for the flow in region II (Fig. 2) are

c
o�u
os

¼ o2�u
o�y2

ð6Þ

�u ¼ 0 for �y ¼ 0 ðon the silicon substrateÞ ð7Þ

�u ¼ cos s for �y ¼ 1

ðon the bottom surface of the oscillating structureÞ
ð8Þ

Eq. (6) is a parabolic equation that can be solved using

the separation of variables method [11,12]. The result is

�uðs;�yÞ ¼ 2
X1
n¼1

ð�1Þnb3
n

b4
n þ c2

sinðbn�yÞ expð�b2
ns=cÞ

þ �y cos sþ 2
X1
n¼1

ð�1Þnbnc

b4
n þ c2

� sinðbn�yÞ
c

b2
n

cos s

 
þ sin s

!
ð9Þ

where bn ¼ np. The first term in the above equation

represents the transient motion, which dies down after

some time. The second and third terms denote the steady

state motion. The energy dissipated by the viscous shear
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on the bottom surface per oscillating cycle can be cal-

culated using Eq. (5).

The strain energy of a microcomb structure is

E ¼ 1

2x
U 2

0

ffiffiffiffiffiffiffiffi
MK

p
ð10Þ

where M is the seismic mass of the microcomb structure

and K denotes the equivalent stiffness of the supporting

tethers for the seismic mass. The strain energy of a mi-

crocomb structure is dissipated by the viscous shear on

the top, bottom, and side surfaces plus the squeezing

drag on the edge surfaces of the oscillating structure.

The quality factor, Q, is defined as

Q ¼ 2p
E
D

ð11Þ

where D ¼ Dtop þ Dbottom þ Dside þ Dedge. The damping

ratio of a microcomb structure is defined by 1 ¼ 1
2Q. The

damping on the side surfaces of the oscillating comb

fingers can be calculated in a way similar to that on the

bottom surface, because the flow in the side regions is

similar to that in region II (Figs. 1 and 2).

3. Numerical solutions

3.1. The numerical boundary conditions

The nondimensional boundary conditions are

(1) �u ¼ �v ¼ 0, on the surfaces of fixed structures.

(2) �u ¼ cos s, �v ¼ 0, on the surfaces of the oscillating

structure.

(3)
o�u
o�y

¼ o�v
o�y

¼ 0, �p ¼ 0, as �y ! 1.

(4)
o�u
o�x

¼ o�v
o�x

¼ o�p
o�x

¼ 0, on the right and left boundaries.

(5) the slip boundary conditions were used if the slip

flow was assumed.

The mean free path k of the air under standard

atmospheric conditions is about 0.06 lm. The gap d
between the oscillating structure and the substrate for a

typical microcomb structure is about 2 lm (region II of

Fig. 2). The Knudsen number in region II is Kn ¼
k=d ¼ 0:03, which indicates that the flow is in the slip

flow region and the slip effect must be taken into ac-

count. For slip flows, the fluid can be assumed to be a

continuum but the slip boundary condition must be

utilized to account for the incomplete momentum ex-

change between the gas molecules and the walls. The slip

boundary condition on the bottom surface (region II of

Fig. 2) of the oscillating structure is [13]

�uw ¼ � 2� r
r

Kn
o�u
o�y

 !
w

þ cos s ð12Þ
The parameter r is the ratio of diffusively reflected

molecules from the wall. The slip boundary condition on

the substrate surface is [13]

�uw ¼ 2� r
r

Kn
o�u
o�y

 !
w

ð13Þ

In general, r may depend on the surface’ roughness,

temperature, and the gas type. Historically, r ¼ 1 has

been used for almost all engineering applications [14],

although values of r less than one have been reported

under controlled test conditions [15]. Measurements or

direct computation of accommodation coefficients for

microdevices are very difficult to obtain. The only

available accommodation coefficients for microchannel

flows were obtained by Arkilic [16]. The working fluids

were nitrogen, argon, and carbon dioxide. The micro-

channel was made from prime silicon crystal. The

measured r is about 0.8. Lower r is possible due to the

low surface roughness of prime silicon crystal. We as-

sumed that r ¼ 1 in this study. The slip boundary con-

ditions were applied in region II within the left and right

edges of the oscillating structure (Fig. 2).

3.2. The numerical procedure

To simulate the motion of the oscillating structure,

the computations were conducted on the transformed

coordinate system ðn; gÞ, where �x ¼ �xðnÞ, �y ¼ �yðgÞ. The
transformed governing equations are

1

�xn

o�u
on

þ 1

�yg

o�v
og

¼ 0 ð14Þ

St � Re o�u
os

þ Re �u
1

�xn

o�u
on

 
þ �v

1

�yg

o�u
og

!

¼ � 1

�xn

o�p
on

þ 1

�xn

o

on
1

�xn

o�u
on

 !"
þ 1

�yg

o

og
1

�yg

o�u
og

 !#
ð15Þ

St � Re o�v
os

þ Re �u
1

�xn

o�v
on

 
þ �v

1

�yg

o�v
og

!

¼ � 1

�yg

o�p
og

þ 1

�xn

o

on
o�v
on

 !"
þ 1

�yg

o

og
1

�yg

o�v
og

 !#
ð16Þ

To avoid pressure oscillations, the Marker and Cell

(MAC) finite difference scheme in conjunction with a

stagger grid was utilized [17]. A typical grid is shown in

Fig. 3. The gap d in region II was used as the charac-

teristic length. The mesh in the �x-direction was regen-

erated after each time step to comply with the movement

of the oscillating structure. The velocities and pressure

were interpolated from the old mesh into the new mesh

accordingly. The mesh in the �y-direction was unchanged

during the simulation because the structure did not

move in that direction. An explicit finite difference
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Fig. 3. A typical grid mesh for the numerical simulations.

Table 1

Dimensions and parametric values for the first microcomb

structure [2]

Structure thickness h 1.8 lm
Gap between the oscillating

structure and the substrate

d 2.0 lm

Finger width wc 4.0 lm
Gap between the oscillating and

fixed fingers

dc 2.0 lm

Effective damping area on the

top or bottom surface of the

oscillating structure

2.930· 104 lm2

Effective damping area on the

side surfaces of the oscillating

comb fingers

0.540· 104 lm2

Effective area on the edges of

the oscillating structure

0.147· 104 lm2

Equivalent stiffness K 3.08· 10�7 N/lm
Effective mass M 0.123 lg
Resonant frequency x 7.98 kHz

Oscillating amplitude 3d, 5d, 7d
Length of the oscillating

structure

15d

Reynolds number, Re 1.333· 10�2

Strouhal number, St 1.002
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scheme was used to discretize the governing equations.

The convection and diffusion terms in the governing

equations were central differenced. The nonlinear terms

in the finite difference equations were linearized by lag-

ging the coefficients.

The momentum equations, Eqs. (15) and (16), were

differentiated with respect to �x and �y, respectively, and
added together to obtain a Poisson equation for pres-

sure.

o2�p
o�x2

þ o2�p
o�y2

¼ �St � Re o
�S
os

� Re
o2�u2

o�x2
� 2Re

oð�u�vÞ
o�xo�y

� Re
o2�v
o�y2

þ o2�S
o�x2

þ o2�S
o�y2

ð17Þ

where �S ¼ o�u
o�x þ o�v

o�y. The expression �Snþ1 ¼ ðo�u
o�x þ o�v

o�yÞ
nþ1

in

the o�S
os term was set equal to zero, because when the

pressure field converges at the nþ 1 time step the con-

tinuity equation should be satisfied [17].

In the numerical simulations, the Poisson equation,

Eq. (17), was solved first by iteration to obtain the

pressure. The convergence criterion for the pressure field

was
P

j�pkþ1
i;j � �pki;jj6 10�4, the superscription k is the

iteration number. After convergence, the pressure

was then substituted into the momentum equations,

Eqs. (15) and (16), to solve for the �u and �v velocities.

This completed one time step. This process continued

until the periodic steady state was reached. The con-

vergence criterion for the periodic steady state wasP
j�unþ1

i;j � �uni;jj6 10�4, where n is the oscillating cycles of

the structure. This criterion was applied at the beginning

of each new oscillating cycle to check for convergence. If

the criterion was met then the calculation stopped. This

process was time accurate. The computer program was

first validated by simulating the Stokes’ second problem

[9]. The oscillating frequency of the infinite plate was

assumed to be x ¼ 8 kHz. The numerically calculated

shear stress was compared with the analytical shear

stress calculated using Eq. (4) at several different time

intervals. The difference was less than 1%. The numeri-

cally calculated velocity profile along the �y-axis at sev-

eral time intervals was also compared with that
calculated using Eq. (4). The difference was less than

0.6%.

A grid independence test was carried out to ensure

that the numerical results do not depend on the grid size.

A 59· 45 grid, a 65 · 52 grid, and a 75 · 62 grid were

simulated for the case listed in Table 1. Their corre-

sponding total Q values were 15.98, 15.41, and 15.49.

The 65 · 52 grid was chosen for all the simulations in this

study. The stability constraint was dominated by the

parameter Re � St. For the first microcomb structure

configuration described in Table 1, a very small time

step, Ds ¼ 4:189� 10�5, was required in the numerical

simulations due to its small Re � St value. It took about

2 h CPU time in a Pentium IV 2.0G PC to run an

oscillating cycle. Three oscillating cycles were required

to reach the periodic steady state.
4. Results and discussions

After validation using the Stokes second problem,

the numerical procedure was then used to calculate the

flow field of the first microcomb structure. The dimen-

sions and required parameters of this model are listed in

Table 1 [2]. The amplitude of the oscillating electrode

was set to 7d so that the motion of the electrode can be

seen more clearly. Fig. 4 shows the partially magnified

velocity vector-plots at s ¼ p, 5p
4
, 3p

2
, 7p

4
, 2p after the

periodic steady state was reached. The boundary con-

ditions were the slip conditions. At s ¼ p, Fig. 4(a), the



Fig. 4. Velocity vector-plots of the first microcomb structure at s ¼ p, 5p=4, 3p=2, 7p=4, 2p after the periodic steady state was reached.
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oscillating structure is moving to the left at its maximum

negative velocity, �U0. The flow field is not symmetrical,

because there is a solid block on the left-bottom corner.

At s ¼ 5p
4
, Fig. 4(b), the flow pattern is similar to that at

s ¼ p, but the velocity is smaller since the oscillating

structure is moving at a smaller velocity. The flow is

nearly quiescent at s ¼ 3p
2
, Fig. 4(c). The velocity of the

oscillating structure is zero at this instant. The flows at

s ¼ 7p
4
and s ¼ 2p, Fig. 4(d) and (e), are similar to that at

s ¼ 5p
4

and s ¼ 2p but with opposite directions. As

demonstrated in Fig. 4(a), the flow in region II resembles

the Couette flow (a linear velocity profile between two

parallel plates). The flow in region I is quite different

from the Stokes flow. For the Stokes flow the velocity

vectors are straight, but the numerical velocity vectors in

region I of Fig. 4 are curvilinear due to the pumping and

sucking motions of the edge surfaces of the oscillating

structure. The curvilinear fluid motion in region I slows

down the fluid velocity in the �x-direction and increases

the viscous damping on the top surface of the oscillating

structure.
Damping affects amplitude as well as frequency in a

microcomb structure. Damping is therefore an impor-

tant design parameter. The quality factor of a micro-

comb structure is defined by 1
Qtotal

¼ 1
Qbottom

þ 1
Qtop

þ
1

Qside
þ 1

Qedge
. To calculate Q numerically, the oscillating

structure length, L (Fig. 2), was assumed constant. The

width of the oscillating structure was the effective top (or

bottom) damping area divided by the length. The energy

dissipated due to the pressure drag on the edge surfaces

of the oscillating structure was calculated using

Dedge ¼
Z
AsidI

Z 2p=x

0

Dp � U0 cosxt � dt � dA ð18Þ

where Dp is the pressure difference between the right and

left edge surfaces of the oscillating structure.

Table 3 compares the analytical, numerical, and

experimental Q-factors for the first microcomb struc-

ture, Table 1. The oscillation amplitude of the moving

electrode was 3d. As demonstrated in Table 3, the

numerical simulations subject to the slip boundary
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Table 2

Dimensions and parametric values for the second microcomb

structure [8]

Structure thickness h 1.96 lm
Gap between the oscillating

structure and the substrate

d 2.0 lm

Finger width wc 2.0 lm
Gap between the oscillating

and fixed fingers

dc 2.88 lm

Effective damping area on the

top or bottom surface of the

oscillating structure

1.151· 104 lm2

Effective damping area on the

side surfaces of the oscillating

comb fingers

0.220· 104 lm2

Effective area on the edges

surfaces of the oscillating

structure

0.0695· 104 lm2

Equivalent stiffness K 5.11· 10�7 N/lm
Effective mass M 0.035 lg
Resonant frequency x 19.2 kHz

Oscillating amplitude 3d
Length of the oscillating

structure

15d

Reynolds number, Re 1.333· 10�2

Strouhal number, St 2.413
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conditions show that the contributions to the total

damping by the bottom, top, and side surfaces of the

oscillating structure are 65.83%, 11.79%, and 12.42%,

respectively. The damping on the edge surfaces con-

tributes another 9.94%. The damping on the bottom,

top, and side surfaces is due to viscous stress. The

damping on the edge surfaces is the result of pressure

difference on the right and left surfaces of the oscillating

structure, which is induced by the pumping and sucking

motions of the moving structure. The bottom surface is

the major damping contributor due to the small gap in

region II. The top, side, and edge surfaces have

approximately equal contribution to the total damping,

around 10–12%.

Although the area of the edge surfaces is only 5% of

the top surface, the damping of the former is only 16%

less than that of the latter. The Q-factors on the side

surfaces in Table 3 were all calculated using Eqs. (5) and

(9) because we did not simulate the flow on the side

regions numerically. The numerical Q-factor on the

bottom surface of the oscillating structure is very close

to the analytical Q-factor. This shows that the flow in

region II can be modeled by the Couette flow quite well.

The velocity vector-plots in Fig. 4 also support this

conclusion. The numerical Q-factor on the top surface is

lower than the analytical Q-factor by about 53%. This

means that the numerically predicted damping is higher

than the analytical damping by about 114%. The reason

was explained in the second paragraph of this section.

The slip boundary conditions in region II increase the

damping on the bottom surface of the oscillating struc-

ture by about 7% but have negligible effect on the

damping of the top, side, and edge surfaces.

The total Q-factor calculated numerically subject to

the slip boundary conditions agrees well with the

experimental Q-factor. The difference is about 7%. Fig. 5

compares the numerical, analytical, and experimental Q-
factors [2]. The test [2] was repeated ten times. The

analytical Q-factor did not include the pressure damping

on the edge surfaces. This is also the way the Q-factors
were calculated by some previous investigators [2,4–6].

The results of this study show that the pressure damping

on the edge surfaces, slip effect, and the increased

damping due to the curvilinear fluid motion in region I

are the major sources of error between the analytical and

experimental Q-factors. Their corresponding percentage

errors are about 8.5%, 3.5%, and 8.5%, respectively.

Table 4 compares the numerical, analytical, and

experimental Q-factors for the second microcomb

structure. The dimensions and parameters of the second

microcomb structure are listed in Table 2. For the slip

boundary conditions, the bottom, top, side, and edge

surfaces contribute 65.86%, 14.07%, 8.89%, and 11.38%

to the total damping, respectively. The slip conditions in

region II reduces the damping on the bottom surface of

the oscillating structure by about 7% and have negligible
effect on the damping of the other surfaces. The total Q-
factor calculated numerically subject to the slip condi-

tions agrees very well with the experimental Q-factor.
Table 4 also lists the numerical results obtained by Ye

et al. [8] using a boundary element method. The

boundary conditions were nonslip. The results of Ye

et al. show that the bottom surface contributes 55% of

the total damping, which is less than our prediction of

66%. The top surface contributes 12% of the total

damping, which is close to our prediction. The side and
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edge surfaces contribute another 33%. They did not

separate the contributions of side and edge surfaces.

Their predicted total Q-factor is 25.16, which is close to

our nonslip prediction of 25.53. Our results show that

the damping on the bottom surface can be predicted

quite well by the Couette-flow model (a linear velocity

profile between two parallel plates), but Ye et al. predict

a smaller damping, the reason is unclear.

Results in Tables 3 and 4 reveal that the viscous

damping on the bottom surface contributes about 65%

to the total damping. It is logical that we investigate the

effect of varying the gap d in region II on the flow field.

Table 5 compares the Q on different surfaces subject to

different gaps, d ¼ 2, 4, 6 lm, for the first microcomb

structure. The boundary conditions were slip conditions.

Increasing d from 2 to 4 and 6 lm decreases the

damping on the bottom surface by about 44% and 59%,

respectively. It also reduces the pressure drag on the

edge surfaces by 25% and 33%, respectively. But it has

very minor effect on the damping of the top surface.
Table 3

Comparison of the analytical, numerical, and experimental Q-factors

Top surface Bottom su

Numerical Q-factors subject to the

nonslip boundary conditions

130.67 21.72

Numerical Q-factors subject to the

slip boundary conditions

130.75 23.41

Analytical Q-factors, nonslip
boundary conditions

279.64 22.86

Experimental Q-factor

Table 4

Comparison of the analytical, numerical, and experimental Q-factors

Top surface Botto

Numerical Q-factors subject to the nonslip

boundary conditions

190.60 37.93

Numerical Q-factors subject to the slip

boundary conditions

190.70 40.85

Numerical results obtained by Ye et al. [8] 209.67 45.75

Analytical Q-factors, nonslip boundary

conditions

315.33 39.99

Experimental Q-factor

Table 5

Comparison of the numerical (slip boundary conditions) Q-factor on d

different gaps between the oscillating structure and the substrate

Top surface Bottom

Numerical Q-factor subject to gap ¼ 1d 130.75 23.41

Numerical Q-factor subject to gap ¼ 2d 138.63 41.99

Numerical Q-factor subject to gap ¼ 3d 142.38 56.47
It is also interesting to study the effect of different

oscillation amplitudes of the electrode on the flow field.

We simulated three different amplitudes (¼ 3d, 5d, 7d)
for the first microcomb structure. All the other dimen-

sions and parameters are the same as those listed in

Table 1. The boundary conditions were slip conditions.

For the amplitude¼ 7d case, the distance between the

fixed and oscillating electrodes was only 1 lm when the

moving electrode arrived at its left most position. Table

6 lists the numerical Q-factors for the three different

amplitude cases. As demonstrated in Table 6, changing

amplitude from 3d to 5d has essentially no effect on the

damping. Increasing amplitude from 3d to 7d has no

effect on the damping of the bottom surface, but in-

creases the pressure damping on the edge surfaces and

the viscous damping on the top surface by 13% and 4%,

respectively. This is because when the distance between

the fixed and the moving electrodes becomes very small,

the squeezing and therefore the pressure drag increases.

The stronger squeezing forces more fluid to move up-
on the different surfaces of the first microcomb structure

rface Side surfaces Edge surfaces Total

124.06 154.89 14.66

124.06 155.04 15.41

124.06 18.06

14.42

on the different surfaces of the second microcomb structure

m surface Side surfaces Edge surfaces Total

301.77 235.57 25.53

301.77 235.83 26.83

76.24 25.16

301.77 31.76

27

ifferent surfaces of the first microcomb structure subject to three

surface Side surfaces Edge surfaces Total

124.06 155.04 15.41

124.06 206.30 22.76

124.06 232.52 26.96



Table 6

Comparison of the numerical (slip boundary conditions) Q-factor on different surfaces of the first microcomb structure subject to three

different oscillating amplitudes of the electrode

Top surface Bottom surface Side surfaces Edge surfaces Total

Numerical Q-factors subject to amplitude ¼ 3d 130.75 23.41 124.06 155.04 15.41

Numerical Q-factors subject to amplitude ¼ 5d 130.60 23.38 124.06 150.75 15.36

Numerical Q-factors subject to amplitude ¼ 7d 136.44 23.24 124.06 137.54 15.22
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ward, the streamlines in region I become more curvi-

linear and the viscous drag increases correspondingly.

The effect of changing amplitude on damping is much

less than what we have thought originally.
5. Conclusions

Numerical results of this study show that the viscous

drag on the bottom surface of the oscillating structure is

the major contributor of the total damping. It makes up

66% of the total damping for the two microcomb

structures investigated. The flow in region II can be

modeled and predicted quite well by the Couette flow

model. The slip boundary conditions reduce the viscous

damping on the bottom surface by about 7%, but have

negligible effect on the damping of the other surfaces as

were demonstrated in Tables 3 and 4. The top, side, and

edge surfaces each contributes about 10–12% of the total

damping. Although the area of the edge surfaces is only

5% of the top surface, it contributes about the same

amount of damping as that of the top surface. The flow

above the top surface, region I, cannot be modeled by

the Stokes flow. Instead of the straight streamlines pre-

dicted by the Stokes flow model, the pumping and

sucking motions of the edge surfaces generate curvilin-

ear streamlines, which increases the viscous drag on the

top surface. The total Q-factor predicted numerically

subject to the slip boundary conditions agree very well

with the experimental data for the two microcomb

structures simulated in this study. Increasing the gap

between the oscillating structure and the substrate is an

effective way to reduce the damping of a microcomb

structure as was shown in Table 5. Changing the

amplitude of the oscillating electrode has only minor

effect on the damping of a microcomb structure as was

demonstrated in Table 6.
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